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Abstract 

For effective humanitarian response in refugee camps, reliable information concerning 

dwelling type, extent, surrounding infrastructure, and respective population size is essential. 

As refugee camps are inherently dynamic in nature, continuous updating and frequent 

monitoring is time and resource-demanding, so that automatic information extraction 

strategies are very useful. In this ongoing research, we used labelled data and high-

resolution Worldview imagery and first trained a Convolutional Neural Network-based U-net 

model architecture. We first trained and tested the model from scratch for Al Hol camp in 

Syria. We then tested the transferability of the model by testing its performance in an image 

of a refugee camp situated in Cameroon. We were using patch size 32,  at the Syrian test 

site, a Mean Area Intersection Over Union (MIoU) of  0.78 and F-1 score of 0.96, while in the 

transfer site, MIoU of 0.69 and an F-1 score of 0.98 were achieved. Furthermore, the effect of 

patch size and the combination of samples from test and transfer sites are investigated.   
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1 Introduction  

Humanitarian aid organizations, human rights groups, and concerned parties working in 
emergency response need accurate and reliable information related to the camp extent, 
dwelling type, number, and structure of dwellings of camps of refugees and internally displaced 
persons (IDP). Especially in the absence of exact population numbers, estimating the number 
of people in need of relief from these proxies is a viable option. Earth observation is routinely 
used to this end when information collection on the ground would be too time-consuming or 
dangerous (e.g., Lang and Füreder, 2015; Bjorgo, 2000; Lang et al., 2020). 

Despite recent advances in computer vision and particularly deep learning for information 
extraction from satellite images (Ma et al., 2019; Li et al., 2020), manual digitization or at least 
extensive clean-up of automatically extracted dwelling features is still required. Quinn et al. 
(2018), who demonstrated the potential of deep learning for automatic dwelling counting, 
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noted problems of transferability of models emanated from differences in sensors and inherent 
characteristics of dwelling structures. To overcome these challenges, Ghorbanzadeh et al. 
(2018) investigated combining object-oriented and deep learning approaches for dwelling 
extraction to improve the transferability of classifiers from one satellite scene to another. 

The large number of dwellings we extracted from satellite images of refugee and IDP camps 
in an operational setting for a major international humanitarian organization over the past 
years now enables us to experiment on the optimal combination of sample-based machine 
learning / deep learning techniques, prior-knowledge based machine teaching methods and an 
optimized selection of samples. As part of ongoing work, this study focuses on the spatial 
transferability of deep learning-based dwelling extraction. More specifically, it has the 
following contributions: firstly, it tests the U-net architecture (Ronneberger, Fischer, & Brox, 
2015) for dwelling extraction in two refugee camps; secondly, it investigates the impact of 
patch size on model capability for dwelling extraction; thirdly, it explores the transferability of 
the model trained at one site to another refugee camp situated in a different geographic region; 
finally, it compares the performance of U-net segmentation network trained on local samples, 
samples from a different camp setting, and network using a combined set of samples.   

2 Methodology 

2.1 The test sites 

The study is based on the two refugee camps in Al Hol, Syria, and Minawao, Cameroon. The 
two camps are characterized by a large fraction of standard-issue shelters as used by UNHCR 
and other organizations but are located in a different part of the world. Therefore, these sites 
allow testing the generalization capability of the trained model from one geographic setting to 
the other. Al Hol consisted of approximately 19,396 dwellings at the time of the investigation. 
It has a total area of 289 hectares with dwelling density ranging from below 15 dwellings per 
hectare at the outskirts of the camp towards 108 dwellings per hectare in the inner parts. 
Almost 97% of the dwellings are standard-issue tents (UNHCR, 2016). It has experienced a 
high population influx (Neil, 2020; REACH, 2020). Minawao has a camp area of 623 hectares 
with a total of 16,601 dwellings with a dwelling density of 1-2 dwellings per hectare towards 
180 dwellings per hectare. The camps have different dwellings, which include small structures 
(~2-5 m2) towards large facility structures (~102 m2). 

2.2 Data and sample generation 

We used a WorldView-2 image with a spatial resolution of 0.5 meters for Al Hol acquired on 
27 April 2020, and a WorldView-3 image with a resolution of 0.3 meters for Minawao acquired 
on 3 June 2016. The Worldview-3 image is resampled to Worldview-2 resolution. The labelled 
vector data used in this study were generated as part of ongoing operational humanitarian 
service by combining object-based image analysis (OBIA) and subsequent manual digitization 
with proper post-processing operations. For labelled data, a qualitative check is made for 
completely missing polygons and the presence of systematic positional shifts. Then these 
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vector files were converted to binary raster tiles (dwelling and non-dwelling), irrespective of 
dwelling type (Figure 1). 

   

Figure 1: Dwelling types in Minawao (right) and Al Hol (left) 

To train, validate and test the model, the test site in Syria is partitioned into training and test 
area. During this partitioning, some part of the area surrounding the camp is also included in 
training and validation samples to reduce model confusion on unseen features from the 
surrounding environment during the prediction phase both onsite and at the transferability 
test site. As patch size influences the variation of Fully Convolutional Network (FCN) model 
performance (Hamwood, Alonso-Caneiro, Read, Vincent, & Collins, 2018), from a training 
area, three sample sets with a mutually exclusive patch size of 32 by 32, 64 by 64, and 128 by 
128 pixels were generated. To train the model, these sample sets are randomly partitioned into 
training and validation samples with a ratio of 0.8 and 0.2. Testing of the trained model is done 
with unseen samples taken from camp parts partitioned to test areas that are not included in 
the training and validation samples and also in the transferability test site. To see the impacts 
of training on mixed samples from test and transfer sites, we have also generated some samples 
from Cameroon and mixed them with samples from Al Hol Syria. 

2.3 The model and training process 

We used the U-net model architecture (Ronneberger et al., 2015). The model is a family of 
Convolutional Neural Network (CNN), which are FCN architectures (Long, Shelhamer, & 
Darrell, 2015) and was reported robust in many problems that need semantic segmentation, 
like medical (Ibtehaz & Rahman, 2020) and aerial (Ivanovsky, Khryashchev, Pavlov, & 
Ostrovskaya, 2019) image segmentation. The model mainly works with an encoder-decoder 
architecture where the contracting encoder extracts abstract features from an image while the 
expanding decoder block reconstructs segmented features (Ibtehaz & Rahman, 2020). Both 
encoder and decoder blocks are constructed from a stack of convolution, pooling, and 
activation layers with skip connections between the decoder and encoder blocks at some stage.  
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For the current study, decoder and encoder blocks used Rectified Linear Unit (ReLU) 
activation (Nair & Hinton, 2010; Zeiler et al., 2013). Weight updating and feature learning are 
done using a categorical cross-entropy loss and stochastic gradient descent (SGD) optimizer 
(Zaheer & Shaziya, 2019) with a learning rate of 0.01. To prevent model overfitting (Ying, 
2019) and reduce unnecessary computational time, an early stopping strategy with a patience 
of 10 epochs taking validation cross-entropy loss as a target monitoring metric has been 
implemented. Final dwelling structure presence probabilities are predicted by using a softmax 
activation, which is further converted to hard binary classes of dwelling features. To see the 
pixel-wise overall model performance, the F-1 score is used. Given that pixel-based metrics 
yield relatively inflated values in segmentation tasks, especially in unbalanced samples, an 
object-based metric, Mean Intersection over Union (MIoU) (Atiqur & Yang, 2001), was used. 
This metric evaluates the spatial (geometric) congruency of predicted and reference objects 
where a perfect match gives MIoU of 1 while complete disjoint MIoU of 0. 

3 Results 

Table 1 shows dwelling extraction accuracy metrics for a model in Syria trained on Syria, 
Cameroon trained on Syria, and Syria and Cameroon trained on samples from both sites 
combined for different patch sizes. The accuracy is calculated over all dwellings, irrespective 
of their type (Figure 1). As model prediction is made on an image that includes areas outside 
of the camp, false positives outside the camp area are masked out before the calculation of 
evaluation metrics.  

Obtained results show variation as per utilized patch size for model training. In terms of MIoU 
metrics, 78.2% areal fit is achieved when trained with patch sizes of 128 pixels by 128 in Syria 
and 79.5% in Cameroon. The combination of samples from the transferability test site to train 
the model has yielded MIoU values almost similar to outputs from the model trained on 
samples from a single site. The model transferability metric is also varying as per input patch 
size, where a model trained with a patch size of 128 performed better. This also holds the same 
for a model trained with samples mixed from model training and transferability site 
(Cameroon). 

Table 1: Accuracy metrics for experiments 

 Test site Syria Cameroon 

Patch size 32 64 128 32 64 128 

F-1 score          0.964 0.961 0.963 0.985 0.983 0.989 

Mean IoU           0.781 0.776 0.782 0.691 0.758 0.795 

 Combined samples Combined samples 

F-1 score          0.963 0.961 0.963 0.986 0.983 0.988 

Mean IoU           0.778 0.777 0.779 0.726 0.763 0.770 
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Figures 1 and 2 show a visual comparison of classification and reference data.  In the first test 
site, except for lack of crispness at the edge of dwellings, it has extracted dwellings with good 
completeness. In the transferability test site (Cameroon), relatively, there are some dwellings 
flagged by a model as false negatives. Combining samples from both sites during model 
training has not added any accuracy improvements except for patch size 32 where combining 
samples resulted in a 3.5% improvement of MIoU.  

 Reference Patch 32 Patch 128 

A 

   

B 

   

Figure 2: Dwelling extraction results in A) from Syrian test site and B) from Cameroon transferability test 

site 

4 Discussion  

Though the model fails to detect small and circular buildings made from natural materials, 
called tukuls (UNHCR, 2016) in the transferability test (Figure 1B), overall, the obtained results 
were in good agreement with segmentation results reported for building extraction (Rastogi, 
Bodani, & Sharma, 2020) and tent detection in refugee camps (Kahraman, Ates, & Kucur 
Ergunay, 2013). Current results were slightly better than segmentation results reported using 
the CNN with OBIA approach (Ghorbanzadeh et al., 2018), which achieved F-1 scores of 
85.2%, 96.3%, and 93.3% for tunnel-shaped, rectangular, and large buildings, respectively. 
Variations in findings could also be attributed to differences in model architecture, patch size 
and details included in dwelling types.  Increasing patch size has resulted in a reduction of false 
negatives within the dwelling blocks with respective trade-offs, including some reflective 
features like roads and bare land as false positives, especially in areas outside of the dwelling 
camp.  Contrary to this, when the patch size is reduced, the model fails to properly segment 
larger and linearly attached dwelling structures (area >280 km2). This is especially prevalent in 
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the transferability test site. Using a different segmentation model, Ergunay et al. (2013) have 
also reported the same impact of window size on the proper segmentation of tents. It should 
be noted that though the dwellings structures are extracted with good performance, the 
segmentation is not exact at the edges. The samples for this study had been produced in a 
time-constraint operational setting, where outlining the dwellings precisely was not essential. 
At some blocks, even segmentation outputs have more precise outlines than reference 
polygons (Figure 1A). We assume that somewhat unsharp outlines in the samples resulted in 
a less-than-perfect segmentation, which also affects evaluation metrics.   

Reference  Patch 32 Patch 64 Patch 128 

    

    

Figure 3: Confusion of background features with dwelling structures in Syria (first row) and patch wise 

variation of larger structure extraction (lower row) 

5 Conclusion 

Though the deep learning-based U-net model showed good overall performance, not all types 
of all dwelling structures were similarly well extracted. Structures that have good contrast with 
the background (bright and drop-shaped dwellings) are well extracted, while those with poor 
contrast (tukuls and small dark structures) were not well extracted. The model’s capability to 
extract features varies with the patch sizes used for model training, especially to segregate 
background features with resembling reflectance characteristics. The model trained with a 
larger patch size can extract features in the transferability test site. In this study, except with 
patch size 32, the combination of samples from both sites has not changed the model 
performance. To get a more robust model that can universally extract dwelling structures, we 
plan further research with different pre-processing strategies that can enhance low contrast 
dwelling from its background, test segmentation models, and further detailed mapping of types 
of dwelling structures in the camp. 
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